Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle.

نویسندگان

  • G Dimopoulos
  • D Seeley
  • A Wolf
  • F C Kafatos
چکیده

Six gene markers have been used to map the progress of the innate immune response of the mosquito vector, Anopheles gambiae, upon infection by the malaria parasite, Plasmodium berghei. In addition to four previously reported genes, the set of markers included NOS (a nitric oxide synthase gene fragment) and ICHIT (a gene encoding two putative chitin-binding domains separated by a polythreonine-rich mucin region). In the midgut, a robust response occurs at 24 h post-infection, at a time when malaria ookinetes traverse the midgut epithelium, but subsides at later phases of malaria development. In contrast, the salivary glands show no significant response at 24 h, but are activated in a prolonged late phase when sporozoites are released from the midgut into the haemolymph and invade the glands, between 10 and 25 days after blood feeding. Furthermore, the abdomen of the mosquito minus the midgut shows significant activation of immune markers, with complex kinetics that are distinct from those of both midgut and salivary glands. The parasite evidently elicits immune responses in multiple tissues of the mosquito, two of which are epithelia that the parasite must traverse to complete its development. The mechanisms of these responses and their significance for malaria transmission are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anopheles and Plasmodium: from laboratory models to natural systems in the field.

Parasites that cause malaria must complete a complex life cycle in Anopheles vector mosquitoes in order to be transmitted from human to human. Previous gene-silencing studies have shown the influence of mosquito immunity in controlling the development of Plasmodium. Thus, parasite survival to the oocyst stage increased when the parasite antagonist gene LRIM1 (leucine-rich repeat immune protein ...

متن کامل

Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria.

We performed a gene expression screen of the entire transcriptome of the major African malaria vector Anopheles gambiae for immune response genes in adult female mosquitoes, which is the developmental stage infected by malaria parasites. Mosquitoes were immune-stimulated for subtractive cloning by treatment with bacterial lipopolysaccharide, a potent and general elicitor of the innate immune re...

متن کامل

Conserved Mosquito/Parasite Interactions Affect Development of Plasmodium falciparum in Africa

In much of sub-Saharan Africa, the mosquito Anopheles gambiae is the main vector of the major human malaria parasite, Plasmodium falciparum. Convenient laboratory studies have identified mosquito genes that affect positively or negatively the developmental cycle of the model rodent parasite, P. berghei. Here, we use transcription profiling and reverse genetics to explore whether five disparate ...

متن کامل

Effects of mosquito genes on Plasmodium development.

Malaria parasites must complete a complex developmental cycle in an Anopheles mosquito vector before transmission to a vertebrate host. Sexual development of the parasite in the midgut is initiated in the lumen immediately after the mosquito ingests infected blood, and the resulting ookinetes must traverse the surrounding epithelial layer before transforming into oocysts. The innate immune syst...

متن کامل

Blood feeding induces hemocyte proliferation and activation in the African malaria mosquito, Anopheles gambiae Giles.

Malaria is a global public health problem, especially in sub-Saharan Africa, where the mosquito Anopheles gambiae Giles serves as the major vector for the protozoan Plasmodium falciparum Welch. One determinant of malaria vector competence is the mosquito's immune system. Hemocytes are a critical component as they produce soluble immune factors that either support or prevent malaria parasite dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 21  شماره 

صفحات  -

تاریخ انتشار 1998